Камни, кристаллы и минералы: разновидности, свойства, очищение и хранение. Кристаллы в природе Где можно определить вид кристалла


МОУ «Ивановская СОШ»

Работу выполнила:

Мещанова Кристина, ученица

МОУ «Ивановская СОШ»

7 года обучения.

Научный руководитель:

Сохорева Наталья Александровна

Ивановка, 2010 г.

Введение……………………………………………………………………………………………………………………………………………3

Кристаллы. Виды кристаллов………………………………………………………………………………………………………….4

Строение кристаллов…………………………………………………………………………………………………………………………7

Применение кристаллов на практике……………………………………………………………………………………………14

Выращивание кристаллов……………………………………………………………………………………………………………….16

Заключение………………………………………………………………………………………………………………………………………20

Введение.

Кто из нас не любовался формой и цветом драгоценных камней, идеальной и неповторимой формой снежинок? В чем причина этой красоты и удивительно точной формы?

Давно было замечено, что некоторые твердые тела встречаются в природе в виде кристаллов – тел, грани которых представляют собой правильные многоугольники. Однако мелкокристаллические вещества встречаются весьма часто. Так, например, почти все горные породы: гранит, песчаники известняк – кристалличны. В настоящее время изучением многообразия кристаллов занимаются следующие науки:

Кристаллография - выявляет признаки единства в этом многообразии, исследует свойства и строение, как одиночных кристаллов, так и кристаллических агрегатов.

кристаллооптика изучает оптические свойства кристаллов.

кристаллохимия изучает закономерности образования кристаллов из различных веществ и в разных средах.

Кристаллография – наука не новая. У её истоков стоит М. В. Ломоносов. А вот выращивание искусственных кристаллов дело более позднее. Популярная книга Шубникова "Образование кристаллов" вышла в 1947 году. Эта научная практика выросла из минералогии, науки о кристаллах и аморфных телах. Выращивание кристаллов стало возможным благодаря изучению данных минералогии о кристаллообразовании в природных условиях. Изучая природу кристаллов, определяли состав, из которого они выросли и условия их роста. И теперь эти процессы имитируют, получая кристаллы с заданными свойствами. В деле получения кристаллов принимают участие химики и физики. Если первые разрабатывают технологию роста, то вторые определяют их свойства.

Благодаря кристаллографии известны многие способы искусственного выращивания кристаллов. Некоторые кристаллы даже можно вырастить в домашних условиях. Многие кристаллы являются продуктами жизнедеятельности организмов. Некоторые виды моллюсков обладают способностью наращивать на инородных телах, попавших в раковину, перламутр. За 5 - 10 лет образуется драгоценный камень жемчуг. В природе можно встретить такие кристаллы как горный хрусталь, флюорит, исландский шпат, каменная соль. К сожалению их нельзя вырастить без специальных приборов, но к счастью есть множество других красивых кристаллов, которые можно вырастить в домашних условиях или даже украсить ими дом.

Цель работы: изучить строения кристаллов, способы получения искусственных кристаллов, применение кристаллов на практике.

^ Кристаллы. Виды кристаллов.

Криста́ллы (от греч. κρύσταλλος, первоначально - лёд, в дальнейшем - горный хрусталь, кристалл) - твёрдые тела, в которых атомы расположены закономерно, образуя трёхмерно-периодическую пространственную укладку - кристаллическую решётку.

Кристаллы - это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений составляющих вещество частиц (атомов, молекул, ионов).

Составляющие данное твёрдое вещество частицы образуют кристаллическую решётку. Если кристаллические решётки пространственно одинаковы или сходны (имеют одинаковую симметрию), то геометрическое различие между ними заключается, в частности, в разных расстояниях между частицами, занимающими узлы решётки. Сами расстояния между частицами называются параметрами решётки. Параметры решётки, а также углы геометрических многогранников определяются физическими методами структурного анализа. Часто твёрдые вещества образуют (в зависимости от условий) более чем одну форму кристаллической решётки; такие формы называются полиморфными модификациями.

Виды кристаллов

Следует разделить идеальный и реальный кристалл. Идеальный кристалл является, по сути, математическим объектом, имеющим полную, свойственную ему симметрию, идеализированно ровные гладкие грани ит.д. Реальный кристалл всегда содержит различные дефекты внутренней структуры решетки, искажения и неровности на гранях и имеет пониженную симметрию многогранника вследствие специфики условий роста, неоднородности питающей среды, повреждений и деформаций. Реальный кристалл не обязательно обладает кристаллографическими гранями и правильной формой, но у него сохраняется главное свойство - закономерное положение атомов в кристаллической решётке.

Большой одиночный кристалл, имеющий более или менее правильную форму, называют монокристаллом. Характерной особенностью монокристалла является анизотропия, то есть зависимость его физических свойств от направления в кристалле. Анизотропия механических свойств монокристалла сказывается, прежде всего в том, что его прочность в разных направлениях различна. При определенный условиях из расплавов металлов можно получить монокристаллы. Если же просто охладить расплавленное железо, то полученное твердое тело анизотропией обладать не будет. Причину этого помогает понять изучение структуры металла, под микроскопом можно увидеть, что оно состоит из отдельных зерен микроскопических размеров. Каждое такое зерно – это кристалл, который принял неправильную форму потому, что его росту помешали соседние кристаллики. Возникшая зернистая структура называется поликристаллической (поли - много). Поскольку все эти зерна ориентированы беспорядочно, то их анизотропия проявиться не может. Вследствие этого поликристалл изотропен, т. е. его свойства в среднем по всем направлениям одинаковы.

^ Кристаллы в природе.

Кристаллы замершей воды, т.е. лед и снег, известны всем. Эти кристаллы почти полгода (а в полярных областях и круглый год) покрывают необозримые пространства Земли, лежат на вершинах гор и сползают с них ледниками, плавают айсбергами в океанах.

Ледяной покров реки, массив ледника или айсберга - это, конечно, не один большой кристалл. Плотная масса льда обычно поликристаллическая, т.е. состоит из множества отдельных кристаллов. Их не всегда различишь, потому что они мелки и все срослись вместе. Иногда эти кристаллы можно различить в тающем льду, например, в льдинках весеннего ледохода на реке. Тогда видно,

Что лед состоит как бы из "карандашиков", сросшихся вместе, как в сложенной пачке карандашей: шестигранные столбики параллельны друг другу и стоят торчком к поверхности воды; эти "карандашики" и есть кристаллики льда.

Фотографии и рисунки снежинок можно найти во многих учебниках физики в главах, в которых рассказывают о симметрии. Но этим и ограничивался до недавнего времени интерес ученых к снежным кристаллам. Серьезное изучение зарождения, роста и структуры снежных кристаллов началось не так давно.
Интерес к снежным кристаллам был связан в основном с изучением образования дождя и явлений, происходящих в облаках. Оказалось, что большая часть дождевых капель начинает свою жизнь как снежные кристаллы, тающие, прежде чем они упадут на землю. Однако только холодные, находящиеся на большой высоте перистые облака состоят из кристалликов льда. В основном же облака представляют собой скопление маленьких водяных капелек, удерживающихся в воздухе так же, как частички дыма. Долгие годы оставалось загадкой, как эти капельки вырастают до размеров, достаточных для того, чтобы они упали на землю. Осталось загадкой и то, что часто эти капельки «отказывались» замерзать, хотя температура облака была намного ниже нормальной температуры замерзания воды, то есть ниже 0?С.

Сейчас мы знаем, что переохлажденное облако остается стабильным до тех пор, пока в нем не появиться хотя бы небольшое количество маленьких кристалликов льда, зарождающихся на частичках земной пыли. Молекулы воды, попавшие на кристаллик льда, образуют с ним прочную связь, разорвать которую довольно трудно. Молекулы же воды, которые конденсируются на капле, оторвать сравнительно легко - теплота испарения меньше энергии, необходимой для отрыва молекулы воды от кристаллика льда. Поэтому если облако состоит из калек воды и кристалликов льда, то кристаллы льда растут гораздо быстрее, чем капли. Более того, благодаря росту кристалликов льда уменьшается влажность окружающего воздуха. Это приводит к тому, что водяные капли постепенно испаряются и исчезают. В то же время кристаллики льда вырастают до размеров, достаточных для их падения на землю. Падая, несколько кристалликов могут объединяться, образуя снежинку.

Хотя снежные кристаллы многообразны, их можно классифицировать по трем основным формам; шестиугольные призматические столбики, тонкие шестиугольные пластины и разветвлённые звёзды. Нетрудно объяснить шестигранную форму кристалликов и снежинок. Изучение кристаллов льда с помощью рентгеновских лучей показало, что молекулы воды в кристалле льда расположены так, что каждая из молекул окружена шестью соседями. Центры этих молекул образуют правильный шестиугольник. Что же касается причин различия форм кристаллов, то до недавнего времени ученые не могли прийти к единому мнению. По некоторым гипотезам форма кристалликов должна в основном определяться степенью пересыщения окружающего воздуха парами воды, а не температурой облака. Но исследования показали, что кристаллы различной формы вырастают при различных температурах.

Высокие перистые облака, температура которых ниже – 30?С, состоит в основном из снежных кристаллов в форме призматических столбиков длиной около половины миллиметра. Облака на средних высотах, температура которых изменяется от - 15? до - 30?С, состоят из кристаллов в форме призм и пластин. В низких облаках, температура которых колеблется от - 5?С до 0?С, можно встретить кристаллы в виде шестиугольных пластин, коротких призм и поражающих своей красотой звезд, имеющих диаметр порядка нескольких миллиметров. Эти звезды являются основой снежинок. При температуре в несколько градусов ниже нуля кристаллики слипаются, образуя снежинки.

Всё это говорит о том, что форма кристаллов определяется в основном температурой, при которой они вырастают. Это подтвердили и эксперименты по выращиванию кристаллов льда в лаборатории. Кристаллы льда выращивались в специальной камере, в которой строго контролировалась температура и количество водяных паров. В качестве затравки использовалась тонкая нить. Температура в камере в различных участках вдоль нити была разной.

Опыты показали, что именно температура определяет форму кристалла.
Количество же водяных паров влияет на скорость роста. Однако до сих пор остается невыясненной точная природа роста снежных кристаллов.

Очень интересно изучение роста снежных кристаллов на земле. Часто зимой при резком потеплении ветки деревьев и стены домов покрываются инеем. Облака, в которых зарождаются снежинки, трудно доступны. Иней же легко доступен и за ним можно наблюдать во время его образования. Иней появляется обычно на предметах, имеющих большую теплоёмкость и малую теплопроводность.
При резком потеплении температура этих предметов оказывается ниже температуры окружающего воздуха, и на них конденсируются водяные пары, находящиеся в воздухе. Если паров в воздухе мало, то получаются красивые пушистые хлопья. При большой влажности воздуха холодные предметы покрываются коркой льда. Вода просто конденсируется на холодных предметах и затем замерзает.

Особенно интересны узоры, которыми покрываются зимой окна квартир, автобусов и трамваев. При резком похолодании температура окон становится ниже температуры воздуха в помещении. На них и оседают молекулы пара, находящиеся во влажном воздухе в комнате, образуя красивые узоры. При этом тоже очень важно, чтобы воздух в комнате был не очень влажным. В противном случае пар сначала сконденсируется на стекле и затем замерзает, образуя слой льда. Узоры не появляются на окне, если открыта форточка. В этом случае температура воздуха в комнате у стекла понижается, став такой же, как и температура самого стекла. В ледяных узорах, можно увидеть большинство форм, которые могут принимать снежные кристаллы.

Известно, как опасны для растений весенние или осенние заморозки. Температура почвы и воздуха падает ниже нуля, подпочвенные воды и соки растений замерзают, образуя иголочки кристалликов льда. Эти острые иголки рвут нежные ткани растений, листья сморщиваются, чернеют, стебли и корни разрушаются. После морозных ночей по утрам в лесу и в поле часто можно наблюдать, как на земле вырастает "ледяная трава". Каждый стебелек такой травы - это прозрачный шестигранный кристаллик льда. Ледяные иголочки достигают длины в 1-2см, а иной раз доходят до 10-12см. Случается, что земля оказывается покрытой пластинками льда, стоящими торчком. Вырастая из земли, эти кристаллики льда поднимают на своих головках песок, гальку, камешки весом до 50-100г. Льдинки даже выталкивают из земли и уносят вверх маленькие растения. Иногда ледяная корка обволакивает растение, и корень просвечивает сквозь лед. Бывает и так, что щеточка ледяных иголок сообща поднимает тяжелый камень, сдвинуть который не под силу одному кристаллику. Искрится и горит радужным блеском хрустальная "ледяная трава", но лишь только пригреют лучи солнца, кристаллики изгибаются навстречу солнцу, падают и быстро тают.

В морозное весеннее или осеннее утро, когда солнце еще не успело уничтожить следы ночных заморозков, деревья и кусты покрыты инеем. На ветках повисли капли льда. Вглядитесь: внутри ледяных капель видны пучки тонких шестигранных иголочек - кристалликов льда. Покрытые инеем листья кажутся щетками: как щетинки стоят на них блестящие шестигранные столбики кристаллов льда. Сказочным богатством кристаллов, хрустальным нарядом украшен лес. Кристаллики льда, причудливыми узорами которых мы любуемся в снежинках, могут в несколько минут погубить самолет. Обледенение - страшный враг самолетов - тоже результат роста кристаллов.

^ Кристаллизация в пещерах.

Все природные воды - в океанах, морях, озерах, ручьях и подземных источниках - являются естественными растворами, все они растворяют встречающиеся им породы, и во всех этих растворах происходят сложные явления кристаллизации.

Особенно интересна кристаллизация подземных вод в пещерах. Капля за каплей просачиваются воды и падают со сводов пещеры вниз. Каждая капелька при этом частично испаряется и остается на потолке пещеры вещество, которое было в ней растворено. Так постепенно образуется на потолке пещеры маленький бугорок, вырастающий затем в сосульку. Эти сосульки сложены из кристалликов. Одна за другой капли мерно падают день за днем, год за годом, века за веками. Звук их падения глухо раздается под сводами. Сосульки все вытягиваются и вытягиваются, а навстречу им начинают расти вверх такие же длинные столбы сосулек со дна пещеры. Иногда сосульки, растущие сверху (сталактиты) и снизу (сталагмиты), встречаются, срастаются вместе и образуют колонны. Так возникают в подземных пещерах узорчатые, витые гирлянды, причудливые колоннады. Сказочно, необыкновенно красивы подземные чертоги, украшенные фантастическими нагромождениями сталактитов и сталагмитов, разделенные на арки решетками из сталактитов. В природе кристаллы неправильной формы встречаются несравненно чаще, чем правильные многогранники. В руслах рек из-за трения кристаллов о песок и камни углы кристаллов стираются, многогранные кристаллы превращаются в округлые камешки - гальку; от действия воды, ветра, морозов кристаллы растрескиваются, рассыпаются; в горных породах кристаллические зерна мешают, друг другу расти и приобретать неправильные формы.

Более 95% всех горных пород, из которых сложена земная кора, образовались непосредственно при кристаллизации природного расплава, т.е. магмы. Кристаллизация магмы - явление очень сложное. Магма представляет собой смесь многих веществ. У всех этих веществ разные температуры кристаллизации, к тому же температура кристаллизации каждого вещества меняется в зависимости от того, в каких условиях находится магма в данный момент, и от того, какие еще вещества присутствуют в ней. Поэтому при остывании и затвердевании магма разделяется на части: первыми в магме возникают и начинают расти кристаллы того вещества, у которого температура кристаллизации самая высокая. Обычно получается так, что это вещество еще не успеет выделиться полностью, а магма уже остыла до температуры кристаллизации второго минерала, и он тоже начинает выделяться в виде кристаллов. Влияя друг на друга, начинают кристаллизоваться и остальные вещества, между тем как ранее образовавшиеся кристаллы тоже продолжают расти. Так образуются горные породы.

^ Строение кристалла.

Правильная многогранная форма кристалла, прежде всего, бросается в глаза наблюдателю, и она, конечно же, не составляет главную особенность кристаллического тела, но всё-таки я предлагаю обратить внимание на это явление - идеальную форму кристалла.

Форму, которую принимает монокристалл тогда, когда при его росте устранены все случайные факторы, называют идеальной. Идеальная форма кристалла имеет вид многогранника. Такой кристалл ограничен плоскими гранями, прямыми рёбрами и обладает симметрией. Как и всякий многогранник, кристалл имеет некоторое число граней P, рёбер R, вершин E, причём эти числа связаны между собой соотношением P+E=R+2. например, у куба 6 граней, 8 вершин и 12 рёбер (6+8=12+2). Для октаэдра (рис.1), додекаэдра (рис.2) это соотношение также справедливо.

Куб, октаэдр, додекаэдр представляют собой простые правильные многогранники. В форме правильных многогранников кристаллизуется сравнительно небольшое число кристаллов. В форме куба кристаллизуется поваренная соль, сернистый цинк, в форме октаэдров - алмаз, в форме ромбического додекаэдра - гранат. Чаще всего вещества кристаллизуются в виде сложных многогранников, т.е. они бывают ограничены несколькими сортами равных между собой граней. Так, например, кристалл имеет обычно 6 восьмиугольных граней, 8 шестиугольных граней и 12 четырёхугольных граней.

Кристаллы одного и того же вещества могут иметь весьма разнообразную форму. Форма кристалла зависит от условий кристаллизации. Цвет также не является характерным признаком кристаллов данного вещества, так как он очень сильно зависит от примесей. Известно, например, что кристаллы плавикового шпата могут быть бесцветными, розовыми, чёрными, фиолетовыми, тёмно-вишнёвыми и золотистыми. Казалось бы, что установление принадлежности двух кристаллов (отличающихся друг от друга и формой и цветом) одному веществу нельзя произвести иначе, как определив их химический состав. Однако кристаллографы установили на первый взгляд в высшей степени поразительный факт: в кристаллах одного вещества углы между соответственными гранями всегда одинаковы (закон постоянства углов).

Что понимают под соответственными гранями? В геометрии грани (плоские многоугольники) считаются равными, если они при наложении совпадают всеми своими точками. В кристаллографии равенство граней означает совершенно иное. Грани могут отличаться между собой по форме и всё-таки считаться равными, если они обладают одинаковыми физическими и химическими свойствами. Установить равенство граней в кристаллографическом смысле удаётся иногда путём внешнего их осмотра.

На рисункеодинаковой штриховкой показаны одинаковые (равные) грани. В кристалле кварца можно установить три сорта граней (на рис.2 они отмечены буквами a,b и c). Хотя в разных кристаллах кварца грани a (b,c) имеют разный размер и форму, они считаются равными. Закон постоянства углов утверждает, что двугранный угол, образованный гранями a и b (рис.2) в различных кристаллах данного вещества, будет один и тот же. Соответственно во всех кристаллах данного вещества будут равны между собой и двугранные углы, образованные гранями a и c, b и c.

Итак, не форма кристаллов, не размер граней, а угол между ними является определенной величиной для каждого кристалла.

Рис. 3 Рис. 4

Для измерения углов между гранями применяют специальный прибор – гониометр. Прикладной гониометр (рис. 3) может быть применён для исследования крупных монокристаллов. Более точные измерения выполняют отражательным гониометром, схема которого дана на рисунке 4. Пучок света, идущий от источника А, попадает на грань кристалла и после отражения входит в зрительную трубку Т. При повороте кристалла на определённый угол пучок света вновь попадает в зрительную трубу. По шкале III гониометра отсчитывают угол между гранями. Измерив углы между гранями неизвестного кристалла, можно по специальному каталогу определить химический состав кристалла.

С явлением симметрии мы часто встречаемся в окружающей жизни. Симметрична бабочка (рис.1). Форма, рисунок и окраска левого крыла повторяет форму, рисунок и окраску правого.

Рис.1 Рис.2

Если тело можно мысленно пересечь плоскостью так, что каждой точке a тела с одной стороны плоскости будет соответствовать точка b , лежащая по другую сторону плоскости и при том так, что прямая ab, соединяющая эти две точки, перпендикулярна плоскости и делится этой плоскостью пополам, то это тело обладает зеркальной симметрией. Сама плоскость называется в этом случае плоскостью симметрии. Например, плоскость, проведённая через середину рёбер куба параллельно его двум граням, служит плоскостью симметрии куба (рис.2). Куб имеет девять плоскостей симметрии.

Кроме зеркальной симметрии, тела могут обладать еще поворотной симметрией. Тело обладает поворотной симметрией, если при повороте на соответствующий угол все части фигуры совмещаются друг с другом. Ось, вокруг которой происходит вращение тела, называют осью симметрии. Смотря по тому, сколько раз совместится фигура сама с собой при одном полном повороте вокруг оси, ось симметрии имеет различный порядок (первый, второй, третий и т. д.).

Цветок ириса, например, обладает осью симметрии третьего порядка (рис.3), снежинки – осью симметрии шестого порядка. В цветах очень часто наблюдается ось симметрии пятого порядка

Тела могут обладать ещё центром симметрии. Центр симметрии – точка в середине тела, относительно которой любая точка тела имеет другую соответствующую ей точку, лежащую на таком же расстоянии от центра в противоположном направлении. В телах может быть несколько плоскостей симметрии, несколько осей симметрии различного порядка, но не может быть больше одного центра симметрии.

Если в параллелограмме, отогнуть углы в противоположные стороны, то центр квадрата, получившегося в середине этой фигуры, будет центром симметрии, так как он делит пополам все прямые, попарно соединяющие одинаковые точки фигуры. Геометрический центр шара, куба, октаэдра является центром симметрии этих тел. Ось симметрии, плоскость симметрии и центр симметрии называют элементами симметрии.

Элементы симметрии обладают рядом свойств. Вот некоторые из них:

Пересечение двух плоскостей симметрии даёт ось симметрии.

Пересечение трёх взаимно перпендикулярных плоскостей симметрии даёт центр симметрии.

Идеальные формы кристаллов симметричны.

В кристаллах можно найти различные элементы симметрии: плоскость симметрии, ось симметрии, центр симметрии.

Рассмотрим симметрию некоторых простейших кристаллических форм. Кристаллы в форме куба (NaCl , KCl и др.) имеют девять плоскостей симметрии, три из которых проходят параллельно граням куба, а шесть – по диагоналям. Кроме того, куб имеет три оси симметрии 4-го порядка, четыре оси 3-го порядка и шесть осей 2-го порядка (рис.1), кроме того, он имеет центр симметрии. Всего в кубе 1+9+3+4+6=23 элемента симметрии.

Кристаллы алмаза, калиевых квасцов имеют форму октаэдров. Октаэдры обладают такими же элементами симметрии, что и кубы. показаны оси вращения октаэдра. У кристаллов медного купороса имеется лишь центр симметрии, других элементов симметрии у них нет.

Симметрия, закон постоянства углов и ряд других свойств! Как объяснить такую привередливость кристаллических форм?

Первой попыткой научного объяснения формы кристаллов считается произведение ^ Иоганна Кеплера " О шестиугольных снежинках" (1611г.). Кеплер высказал предположение, что форма снежинок (кристалликов льда) есть следствие особых расположений составляющих их частиц.

В 1783 году французский аббат Рене Жюст Гаюи, минералог по призванию, высказал предположение, что всякий кристалл составлен из параллельно расположенных равных частиц, смежных по целым граням. В 1824 году ученик великого Гаусса, профессор физики во Фрайбурге Л.А.Зеебер для объяснения расширения кристаллов при нагревании предложил заменить многогранники Гаюи их центрами тяжестей. Причём эти центры тяжести образуют правильную систему точек, которая впоследствии была названа пространственной решёткой, а сами точки – узлами пространственной решётки. Например, кристалл поваренной соли NaCl состоит из совокупности большого числа ионов Na+ и Cl-, определённым образом расположенных друг относительно друга. Если изобразить каждый из ионов точкой и соединить их между собой, то можно получить геометрический образ, рисующий внутреннюю структуру идеального кристалла поваренной соли, его пространственную решётку (рис.1).

Пространственные решётки различных кристаллов различны. На рисунке 2 показана пространственная решётка алмаза, а на рисунке 3 – графита.

Рис.1 Рис.2 Рис.3

В каждой пространственной решётке можно выделить некоторый повторяющийся элемент её структуры, или, иначе говоря, элементарную ячейку. Пространственные, т.е. объёмные, а не плоские элементарные ячейки – это "кирпичи", прикладыванием которых друг к другу в пространстве строится кристалл. Так, элементарной ячейкой пространственной решётки NaCl является куб (рис. 4а). Очень важно здесь отметить, что существует много способов построения пространственных решёток из элементарных ячеек. "А сколько же их существует?" - спросите вы. Эта сложная задача была решена Е.С.Фёдоровым. Он доказал, что должны существовать 230 способов построения кристалла.

К наиболее простым элементарным ячейкам относятся куб, объемно-центрированный куб, гранецентрированный куб, гексагональная призма (см. рис. 4,а,б,в,г).

Догадка о пространственной решётке кристалла – свидетельство о возможности научного предвидения. Ведь в то время (во второй половине XIX в.) не только не существовало доказательства этой гипотезы, но и само существование молекул и атомов вещества многими ставилось под сомнение. Понятие о пространственной решётке кристалла оказалось очень плодотворным, оно позволило объяснить ряд свойств кристалла. Известно, например, что кристалл, имеющий идеальную форму, ограничен плоскими гранями и прямыми рёбрами. Этот факт можно объяснить тем, что плоскость и рёбра идеального кристалла всегда проходят через узлы пространственной решётки.

Становиться также понятным, почему кристаллы одного и того же вещества могут иметь разнообразную форму. Подобно тому, как из данной плоской сетки можно вырезать различные по форме плоскости фигуры, так и кристалл, имея определённую пространственную решётку, может иметь различную форму.

В зависимости от строения, кристаллы делятся на ионные, ковалентные, молекулярные и металлические. Ионные кристаллы построены из чередующихся катионов и анионов, которые удерживаются в определенном порядке силами электростатического притяжения и отталкивания.

Электростатические силы ненаправленные: каждый ион может удержать вокруг себя столько ионов противоположного знака, сколько помещается. Но при этом силы притяжения и отталкивания должны быть уравновешены и должна сохраняться общая электронейтральность кристалла. Все это с учетом размеров ионов приводит к различным кристаллическим структурам. Так, при взаимодействии ионов Na+ и Cl– возникает октаэдрическая координация: каждый ион удерживает около себя шесть ионов противоположного знака, расположенных по вершинам октаэдра.Ионные кристаллы образуют большинство солей неорганических и органических кислот, оксиды, гидроксиды, соли. В ионных кристаллах связи между ионами прочные, поэтому такие кристаллы имеют высокие температуры плавления (801° С для NaCl, 2627° С для СаО).

В ковалентных кристаллах (их еще называют атомными) в узлах кристаллической решетки находятся атомы, одинаковые или разные, которые связаны ковалентными связями

Эти связи прочные и направлены под определенными углами. Типичным примером является алмаз; в его кристалле каждый атом углерода связан с четырьмя другими атомами, находящимися в вершинах тетраэдра. Ковалентные кристаллы образуют бор, кремний, германий, мышьяк, ZnS, SiO2, ReO3, TiO2, CuNCS.

Молекулярные кристаллы построены из изолированных молекул, между которыми действуют сравнительно слабые силы притяжения. В результате такие кристаллы имеют намного меньшие температуры плавления и кипения, твердость их низка. Так, кристаллы благородных газов (они построены из изолированных атомов) плавятся уже при очень низких температурах. Из неорганических соединений молекулярные кристаллы образуют многие неметаллы (благородные газы, водород, азот, белый фосфор, кислород, сера, галогены), соединения, молекулы которых образованы только ковалентными связями (H2O, HCl, NH3, CO2 и др.). Этот тип кристаллов характерен также почти для всех органических соединений. Прочность молекулярных кристаллов зависит от размеров и сложности молекул. Так, кристаллы гелия (радиус атома 0,12 нм) плавятся при –271,4°С (под давлением 30 атм), а ксенона (радиус 0,22 нм) – при –111,8° С; кристаллы фтора плавятся при –219,6° С, а иода – при +113,6° С; метана СН4 – при –182,5° С, а триаконтана С30Н62 – при +65,8° С.

Металлические кристаллы образуют чистые металлы и их сплавы. Такие кристаллы можно увидеть на изломе металлов, а также на поверхности оцинкованной жести. Кристаллическая решетка металлов образована катионами, которые связаны подвижными электронами («электронным газом»). Такое строение обусловливает электропроводность, ковкость, высокую отражательную способность (блеск) кристаллов. Структура металлических кристаллов образуется в результате разной упаковки атомов-шаров.

Применение кристаллов.

Применения кристаллов в науке и технике так многочисленны и разнообразны, что их трудно перечислить. Поэтому ограничимся несколькими примерами.

Самый твердый и самый редкий из природных минералов - алмаз. Сегодня алмаз в первую очередь камень-работник, а не камень-украшение. Благодаря своей исключительной твердости алмаз играет громадную роль в технике. Алмазными пилами распиливают камни. Алмазная пила - это большой (до 2-х метров в диаметре) вращающийся стальной диск, на краях которого сделаны надрезы или зарубки. Мелкий порошок алмаза, смешанный с каким-нибудь клейким веществом, втирают в эти надрезы. Такой диск, вращаясь с большой скоростью, быстро распиливает любой камень. Колоссальное значение имеет алмаз при бурении горных пород, в горных работах. В граверных инструментах, делительных машинах, аппаратах для испытания твердости, сверлах для камня и металла вставлены алмазные острия.

Алмазным порошком шлифуют и полируют твердые камни, закаленную сталь, твердые и сверхтвердые сплавы. Сам алмаз можно резать, шлифовать и гравировать тоже только алмазом. Наиболее ответственные детали двигателей в автомобильном и авиационном производстве обрабатывают алмазными резцами и сверлами.

Рубин и сапфир относятся к самым красивым и самым дорогим из драгоценных камней. У всех этих камней есть и другие качества, более скромные, но полезные. Кроваво-красный рубин и лазарево-синий сапфир - это родные братья, это вообще один и тот же минерал - корунд, окись алюминия А12О3. Разница в цвете возникла из-за очень малых примесей в окиси алюминия: ничтожная добавка хрома превращает бесцветный корунд в кроваво-красный рубин, окись титана - в сапфир. Есть корунды и других цветов. Есть у них ещё совсем скромный, невзрачный брат: бурый, непрозрачный, мелкий корунд - наждак, которым чистят металл, из которого делают наждачную шкурку. Корунд со всеми его разновидностями - это один из самых твердых камней на Земле, самый твердый после алмаза. Корундом можно сверлить, шлифовать, полировать, точить камень и металл. Из корунда и наждака делают точильные круги и бруски, шлифовальные порошки.

Вся часовая промышленность работает на искусственных рубинах. На полупроводниковых заводах тончайшие схемы рисуют рубиновыми иглами. В текстильной и химической промышленности рубиновые нитеводители вытягивают нити из искусственных волокон, из капрона, из нейлона. Новая жизнь рубина - это лазер или, как его называют в науке, оптический квантовый генератор (ОКГ), чудесный прибор наших дней. В 1960г. был создан первый лазер на рубине. Оказалось, что кристалл рубина усиливает свет. Лазер светит ярче тысячи солнц.

Мощный луч лазера громадный мощностью. Он легко прожигает листовой металл, сваривает металлические провода, прожигает металлические трубы, сверлит тончайшие отверстия в твердых сплавах, алмазе. Эти функции выполняет твердый лазер, где используется рубин, гранат с неодитом. В глазной хирургии применяется чаще всего неодиновые лазеры и лазеры на рубине. В наземных системах ближнего радиуса действия часто используются инжекционные лазеры на арсениде галлия.

Сапфир прозрачен, поэтому из него делают пластины для оптических приборов.

Основная масса кристаллов сапфира идет в полупроводниковую промышленность.

Кремень, аметист, яшма, опал, халцедон - все это разновидности кварца. Мелкие зернышки кварца образуют песок. А самая красивая, самая чудесная разновидность кварца - это и есть горный хрусталь, т.е. прозрачные кристаллы кварца. Поэтому из прозрачного кварца делают линзы, призмы и др. детали оптических приборов.

В технике также нашел своё применение поликристаллический материал поляроид. Поляроид - это тонкая прозрачная пленка, сплошь заполненная крохотными прозрачными игольчатыми кристалликами вещества, двупреломляющего и поляризующего свет. Все кристаллики расположены параллельно друг другу, поэтому все они одинаково поляризуют свет, проходящий через пленку. Поляроидные пленки применяются в поляроидных очках. Поляроиды гасят блики отраженного света, пропуская весь остальной свет. Они незаменимы для полярников, которым постоянно приходится смотреть на ослепительное отражение солнечных лучей от заледеневшего снежного поля. Поляроидные стекла помогут предотвратить столкновения встречных автомобилей, которые очень часто случаются из-за того, что огни встречной машины ослепляют шофера, и он не видит этой машины. Если же ветровые стекла автомобилей и стекла автомобильных фонарей сделать из поляроида, причем повернуть оба поляроида так, чтобы их оптические оси были смещены, то в

Всероссийская Интернет-олимпиада школьников, студентов, аспирантов и молодых ученых в области наносистем, наноматериалов и нанотехнологий "Нанотехнологии - прорыв в Будущее!"

ГБОУ лицей № 000, Москва

Творческая работа

О кристаллах

Работу выполнили учащиеся ГБОУ лицея 1575, Москва:

Руководитель работы:

Учитель физики, завкафедрой естественных наук лицея 1575,

Тьютор: Усович Ольга, МГУ

Аннотация

О кристаллах

Цель работы: изучить, что такое природный кристалл, его свойства, вырастить кристаллы из монофосфата аммония .

Актуальность: Кристаллы издавна привлекали внимание людей своей красотой, правильной формой, загадочностью. Эти тела окружают нас всю жизнь, ведь это и лёд, и снег, и снежинки и многие драгоценные и полудрагоценные камни, а так же твёрдые тела, в которых атомы расположены закономерно, образуя кристаллическую решётку. Интерес к кристаллам проявлял даже такой известный учёный как Ломоносов: «...Одно любопытство довольно побуждает, чтобы знать внутренность российской подземной натуры и оную, для общего приращения наук описав, показать учёному совету».

Задачи: 1.Найти информацию о том, что такое кристалл и минерал

3. Рассказать о том, что такое песок

4. Провести опыты по выращиванию кристалла

Результаты:

1. Мы узнали, что кристаллы помнят предысторию роста

2. Вырастили кристаллы из фосфата аммония, а так же кристаллы на картоне за счет капиллярного роста

3. Составили мини-коллекцию песка

1. Введение. 4

2. Кристаллы и минералы. 5

2.1 Виды кристаллов. 7

2.2 Идеальный кристалл. 7

2.3 Реальный кристалл. 7

3. Свойства кристаллов................................................................................. ……..8

3.1 Симметрия……………………………………………………………………...8

3.2 Анизотропия……………………………………………………………………8

4. Кристаллы песка …………...……………………………………………...…….9

5. Теоретическая часть: «выращивание кристаллов». 12

5.1 Зачем выращивают кристаллы.. 12

6. Самостоятельное выращивание кристаллов. 13

6.1 Кристаллы фосфата аммония. 13

Список литературы. 15

«Почти весь мир кристалличен.

В мире царит кристалл и его твердые,

прямолинейные законы»

Академик

1. Введение.

Еще с детства мы помним сказки, которые нам рассказывали бабушки, дедушки, родители. Эти сказки были из разных стран, на разную тему, с разными персонажами, но у всех них было одно общее, во всех было волшебство. Иногда оно передавалось через сверхъестественные способности персонажей, а иногда через магические предметы. Этими предметами нередко становились и кристаллы: кристалл мудрости, кристалл вечности.… Не одну сказку можно найти, в названии которой упоминается кристалл: «малахитовая шкатулка», «хозяйка медной горы», «воспоминания о камне». И хоть в реальной жизни у кристаллов нет магических свойств, интерес к ним остался с детства.

В нашем проекте мы рассказываем о кристаллах, их свойствах, затрагиваем тему о песке, ведь каждая песчинка это отдельный кристалл кварца. Так же в практической части работы мы вырастили кристаллы из монофосфата аммония.

1.
2.Кристаллы и минералы .

По физическим свойствам и молекулярной структуре твёрдые тела разделяют на три класса: кристаллические, аморфные и композиты.

Кристаллы - твёрдые тела, в которых атомы расположены периодично, образуя трёхмерно-периодическую пространственную укладку - кристаллическую решётку.

Кристаллическая структура, будучи индивидуальной для каждого вещества, относится к основным физико-химическим свойствам.

Кристаллизация - образование кристаллов из паров, растворов, расплавов, вещества в твёрдом состоянии (аморфном или другом кристаллическом), в процессе электролиза и при химических реакциях. Приводит к образованию минералов.

По размерам кристаллы бывают различными. Многие из них можно увидеть только в микроскоп. Но встречаются гигантские кристаллы массой в несколько тонн.

Вид кристаллической ячейки льда первым удалось определить Лайнусу Пойлингу в 1935 году.

В такой элементарной ячейке каждый атом кислорода соседствует с четырьмя атомами водорода , причём угол между связями 109,5°, а у воды угол - 105°. Такое различие в углах приводит к искажению формы молекулы, что приводит к тому, что атомы водорода не могут располагаться посредине между атомами кислорода. Элементарная ячейка льда имеет гексагональную структуру, соответствующую шестисторонней симметрии снежинок.

Гексагональная структура льда остается устойчивой при комнатной температуре до температуры плавления. При других температурах и давлениях могут образовываться различного строения снежинки и льдинки.

Разные кристаллы не обязательно формируются разными элементами. Пример, алмаз и графит. Различие в их свойствах связано исключительно с различием их кристаллической структуры.

Минерал - природное тело с определённым химическим составом и кристаллической структурой, образующееся в результате природных физико-химических процессов и обладающее определёнными физическими, механическими и химическими свойствами.

Понятие «минерал» подразумевает твёрдое природное неорганическое кристаллическое вещество.

По высказыванию известного минералога, профессора Санкт-Петербургского горного института, "минерал - это кристалл". Ясно, что свойства минералов и горных пород теснейшим образом связаны с общими свойствами кристаллического состояния.

Русский учёный Фёдоров Е. С. установил, что в природе может существовать только 230 различных пространственных групп, охватывающих всевозможные кристаллические структуры.

К простым кристаллическим решёткам можно отнести

Простую кубическую (частицы располагаются в вершинах куба);

Гранецентрированную кубическую (частицы располагаются и в вершинах куба и в центре каждой грани);

Объёмноцентрированную кубическую (частицы располагаются и в вершинах куба и в центре каждой кубической ячейки);

Гексагональную.

Важнейшими характеристиками минералов являются кристаллохимическая структура и состав. Все остальные свойства минералов вытекают из них или с ними взаимосвязаны.

2.1 Виды кристаллов.

В зависимости от строения, кристаллы делятся на ионные, ковалентные, молекулярные и металлические.

Ионные кристаллы построены из чередующихся катионов (положительно заряженный ион) и анионов (отрицательно заряженный ион), которые удерживаются в определенном порядке силами электростатического притяжения и отталкивания. Ионные кристаллы образуют большинство солей неорганических и органических кислот, оксиды, гидроксиды, соли. В ковалентных кристаллах (их еще называют атомными) в узлах кристаллической решетки находятся атомы, одинаковые или разные, которые связаны ковалентными (образованные перекрытием пары валентных электронных облаков) связями. Эти связи прочные и направлены под определенными углами. Типичным примером является алмаз; в его кристалле каждый атом углерода связан с четырьмя другими атомами, находящимися в вершинах тетраэдра.

Молекулярные кристаллы построены из изолированных молекул, между которыми действуют сравнительно слабые силы притяжения. В результате такие кристаллы имеют намного меньшие температуры плавления и кипения, твердость их низка. Из неорганических соединений молекулярные кристаллы образуют многие неметаллы (благородные газы, водород, азот , белый фосфор, кислород, сера, галогены), соединения, молекулы которых образованы только ковалентными связями. Этот тип кристаллов характерен также почти для всех органических соединений.

Металлические кристаллы образуют чистые металлы и их сплавы. Такие кристаллы можно увидеть на изломе металлов, а также на поверхности оцинкованной жести. Кристаллическая решетка металлов образована катионами, которые связаны подвижными электронами («электронным газом»). Такое строение обусловливает электропроводность , ковкость, высокую отражательную способность (блеск) кристаллов.

Следует разделить идеальный и реальный кристалл.

2.2 Идеальный кристалл.

Является, по сути, математическим объектом, имеющим полную, свойственную ему симметрию, идеализированно ровные гладкие грани.

2.3 Реальный кристалл.

Всегда содержит различные дефекты внутренней структуры решетки, искажения и неровности на гранях и имеет пониженную симметрию многогранника вследствие специфики условий роста, неоднородности питающей среды, повреждений и деформаций. Реальный кристалл не обязательно обладает кристаллографическими гранями и правильной формой, но у него сохраняется главное свойство - закономерное положение атомов в кристаллической решётке.

Для наглядного представления таких структур используются кристаллические решётки, в узлах которых располагаются центры атомов или молекул (или ионов) вещества. Структурный элемент решётки минимального размера называется элементарной ячейкой. Вся кристаллическая решётка может быть построена путём параллельного переноса элементарной ячейки по некоторым направлениям.

Кристаллы, что немало важно, помнят свою предысторию, «место рождения».

Кристаллы образуются:

В момент образования вещества в результате химической реакции

При присоединении к молекуле солей молекулы воды

При осаждении растворённого вещества из раствора

При переходе газообразного или жидкого вещества в твёрдое

При росте кристаллов атомы располагаются в определенном порядке. В это время происходит внешнее воздействие (меняется температура, давление). из-за этого возникают дислокации, из-за них атомы располагаются в ином порядке. Получается, что по дислокации можно понять откуда этот кристалл, как он образовался, что происходит рядом. например снежинки не могут быть одинаковыми, потому что не может быть абсолютно идентичных условий образования, примесей, но все они имеют шестиугольную форму, поскольку имеют схожий основной состав и условия тоже ограничены (температура ниже 0 и т. д.).

Алмаз, графит и наноалмаз являются примером того, что не обязательно кристаллы разные по свойствам состоят из разных веществ. Эти вещества одинаковы по составу и различаются они только строением кристаллической решетки. Наноалмазы были обнаружены в природе в кратерах, образовавшихся от падения метеоритов. Наноалмазы находят применение при создании элементов наноэлектроники.

алмаз и графит наноалмаз

наноалмаз

кристаллическая решётка алмаза и графита

3. Свойства кристаллов.

Хоть реальные кристаллы, встречающиеся в нашей жизни, не обладают магическими свойствами, они обладают не менее интересными свойствами, такие как:

3.1 Симметрия.

Закономерность атомного строения (кристалл может быть совмещён сам с собой путём преобразований симметрии). В природе существует только 230 различных пространственных групп, охватывающих все возможные кристаллические структуры (это установил русский учёный Фёдоров Е. С.)

3.2Анизотропия.

Анизотропия - неодинаковость свойств кристаллов по различным направлениям. Анизотропия является характерным свойством кристаллических тел. При этом свойство анизотропии в простейшем виде проявляется только у монокристаллов. У поликристаллов анизотропия тела в целом может не проявляться вследствие беспорядочной ориентировки микрокристаллов, или даже не проявляется, за исключением случаев специальных условий кристаллизации, специальной обработки и т. п.

Причиной анизотропности кристаллов является то, что при упорядоченном расположении атомов, молекул или ионов силы взаимодействия между ними и межатомные расстояния оказываются неодинаковыми по различным направлениям. Причиной анизотропии молекулярного кристалла может быть также асимметрия его молекул. Макроскопически эта неодинаковость проявляется как правило лишь если кристаллическая структура не слишком симметрична.

4. Кристаллы песка.

Природная коллекция

Из песка получаются красивые природные коллекции.

Когда в пустыне выпадают осадки, вода быстро впитывается в песок. Если в песке много гипса, частицы его вымываются и уходят с водой вглубь. От сильной жары вода поднимается снова к поверхности. Когда происходит полное испарение воды, образуются новые гипсовые кристаллы. Так как формирование минерала происходит в слое песка, песок становится частью кристалла. И туристы, побывавшие в Сахаре с удовольствием берут эти камни - розы пустыни - в свои коллекции. Диаметр лепестков «розы пустыни» бывает от 2-3 миллиметров до нескольких дециметров. Окраска кристаллов целиком зависит от цвета песка, в котором они формировались. Белые «розы пустыни» находят в тунисской Сахаре, черные – в пустынях Аргентины.

Фото Чопорова А. Пустыня Сахара. Природная коллекция. “Роза пустыни”- песчаник

В наше время коллекционирование песка с разных пляжей и вулканов не редкость. Но мало кто знает, что коллекция песка это еще и коллекция кристаллов. Каждая песчинка это маленький кристалл кварца!

Песок из карьера в основном состоит из желтых кристалликов кварца, примеси содержит в минимальном количестве. В Песке из вулкана Гозо может попадаться обсидиан или вулканическое стекло. В песке из Греции многие песчинки не кристаллы кварца, а маленькие минералы других веществ. Белый песок с пляжей Туниса практически не содержит посторонних веществ. Он весь из белых кристаллов кварца. Песчаник является цельным камнем, состоящим из «слепленных» между собой песчинок. Горный хрусталь имеет много общего с песком. Это тоже кристаллики кварца, но только горный хрусталь крупнее по размерам.

Фото 1.Обычный песок из карьера. Фото 2. Песок с белых пляжей Туниса

Фото 3. Вулканический песок

из Греции. Фото 4. Рождение обсидиана

Фото 5. Песок с острова Гозо.

Фото сделаны в микроскоп с увеличением 10.

5. Теоретическая часть: «выращивание кристаллов».

5.1 Зачем выращивают кристаллы

Зачем создают искусственные кристаллы, если и так почти все твердые тела" вокруг нас имеют кристаллическое строение?

Прежде всего природные кристаллы не всегда достаточно крупны, часто они неоднородны, в них имеются нежелательные примеси. При искусствен­ном выращивании можно получить кристаллы крупнее и чище, чем в природе.

Есть и такие кристаллы, которые в природе редки и ценятся дорого, а в технике очень нужны. Поэтому разработаны лабораторные и заводские методы выращивания кристаллов алмаза, кварца, корунда. В лабораториях выращивают большие кристаллы, необходимые для техники и науки, искусственные драгоценные камни , кристаллические материалы для точных приборов; там создают и те кристаллы, которые изу­чают кристаллографы, физики, химики, металловеды, минералоги, открывая в них новые замечательные яв­ления и свойства. А самое главное - искусственно вы­ращивая кристаллы, создают вещества, каких вообще нет в природе, множество новых веществ. По словам академика Николая Васильевича Белова, крупный кристалл - это объект проявления, изучения и ис­пользования поразительных свойств кристалла, непре­рывно революционизирующих науку и технику.

В лабораториях и на заводах все более совершен­ствуют методы создания искусственных кристаллов с нужными для техники свойствами, так сказать, кри­сталлов «по мерке», или «на заказ».

Так же, когда мы выращиваем кристаллы, мы будто бы создаем кусочек сказки. Будто по волшебству из порошка и воды вырастают кристаллы. Интерес также состоит в том, что узнавая научное объяснение «сказки», нам кажется, что все, что окружает нас – сказка. Только не волшебники, а химики, не магический порошок, а монофосфат аммония, не волшебный кристалл со своими магическими свойствами и красотой, а обычный, но обязательно красивый.

6.Самостоятельное выращивание кристаллов

Кристаллы образуются:

1. В момент образования вещества в результате химической реакции

2. При присоединении к молекуле солей молекулы воды

3. При осаждении растворённого вещества из раствора

4. При переходе газообразного или жидкого вещества в твёрдое

6.1 Кристаллы фосфата аммония.

1. Подготовка материалов. Нам понадобится: фосфат аммония, мерный стакан, горячая вода, палочка для перемешивания, ёмкость для кристаллов (для выращивания второго типа ещё и камни).

2. Добавляем 70 мл горячей воды на 25 г фосфата аммония и тщательно размешиваем, пока фосфат аммония не растворится.

3. А) полученный раствор выливаем в ёмкость и ждём около суток.

Б) 1. В ёмкость для кристаллов насыпаем камни.

2. в ёмкость наливаем раствор и ждём около недели.

3.А другим раствором пропитываем кусок зелёной бумаги.

Можно вырастить кристаллы и на картоне (картон – пористая структура). Нужно натереть наждачкой края картонки и поставить ее в раствор. На схеме можно увидеть как происходит этот процесс. По капиллярам раствор попадает к краям картонки, происходит испарение и процесс кристаллизации, из раствора вырастают кристаллики.

Схема процесса роста кристалла:капилляры - испарение-кристаллизация

Результаты: (кристаллы фосфата аммония) : (Фото автора)

В этой системе кристаллов есть кристаллы дигидрофосфата аммония, это перспективный материал с нелинейными электрическими свойствами.

Выводы:

1.Мы узнали, что кристаллы помнят предысторию роста

2.Вырастили кристаллы из фосфата аммония, а так же кристаллы на картоне за счет капиллярного роста

3.Составили мини-коллекцию песка

Список литературы.

1. «Удивительные наноструктуры», Кеннет Деффейс и Стефен ДеффейсПод редакцией проф. , Бином 2011

2. «Горные породы и минералы» Научно - поп. издание. Москва, Мир, 1986

3. «Драгоценные камни», Смит Г, Мир, 1980

4. «Практическое руководство по минералогии», Смольянинов Н. А, геологическая литература, 1948

5. «Геологический словарь», М,1980

Среди всех чудес природы мир камней и минералов отличается фантастическим разнообразием и гармонией сочетания цвета и формы. Совершенство контрастирует с хрупкостью, а геометрия форм способна завораживать. Природа — самый талантливый художник, ее произведения бесценны, они наделены древней энергией, силой и божественной красотой. Мир камней представлен тысячами видов форм и окрасок. А структуру минерала зачастую можно увидеть только под микроскопом, так как кристаллические образования бывают настолько малы, что не видны невооруженному глазу.

Разнообразие кристаллов настолько же велико, насколько велико разнообразие человеческих лиц. Как и мы, кристаллы обладают не только индивидуальным внешним обликом, но и внутренней энергией. Каждый камень имеет свой характер и силу. Окраска минералов многообразна и изменчива, это связано прежде всего с вхождением различных элементов в кристаллическую решетку. Каждый минерал образуется в результате синтеза, который происходит по строгим законам физики и химии.

Фантазия природы дарит кристаллам причудливые формы, будь то пучок стеблей мезолита, песчаная роза гипса, загадочный лабиринт висмута или целая вселенная внутри жеоды агата. Неудивительно, что эти сокровища становятся желанными объектами коллекционирования. В этом деле я не стала исключением. Набор моих минералов вряд ли можно назвать коллекцией, но в нем присутствуют дорогие мне камни, которые находятся со мной долгое время, подпитывают меня силами и вдохновением.

А сегодня мне хочется рассказать об основных и наиболее распространенных видах кристаллов: друзах, жеодах и монокристаллах.

Друза (в переводе с немецкого druse означает «щетка»)
— это множество сросшихся кристаллов. Однако не все кристаллические сростки принято считать друзой. Под друзами обычно понимаются сросшиеся кристаллы, хаотично расположенные на одном основании. Размеры и количество кристаллов в друзе могут варьироваться. Например, друза, размер кристаллов которой составляет несколько миллиметров называется щеткой . А друза с плоским основанием и кристаллами, направленными в стороны от центра называется цветком . Такие образования выстилают стенки пустот, нарастают на стенках трещин и встречаются в открытых полостях пород. Агрегаты в виде друз кристаллов характерны для многих минералов — кварца, кальцита, флюорита, пирита, барита, полевых шпатов, гранатов и др.

Друза в более глобальном понимании — это множество кристаллов, сосуществующих вместе в гармонии и мире. Это олицетворение развитого общества, где каждый его член уникален и совершенен, но все они живут на общем основании, решая совместные задачи. Каждый кристалл воздействует на соседние как своей собственной энергией, так и той, что он принял от своих близких. Заряжая друг друга, кристаллы друзы излучают мощную энергию в окружающее пространство. Друзы прекрасно подходят для очистки помещения, поскольку они поглощают, трансформируют и излучают энергию.

Жеода (от греческого геодес , что означает «земляной», «землеподобный»)
— это геологические образования, пустоты в горных породах, стенки которых обычно выложены друзами кристаллов или сферолитовыми структурами. Форма жеоды может быть любая, но чаще она округлая или эллипсоидальная. Размеры их могут быть от нескольких миллиметров до нескольких метров. Самые большие жеоды могут достигать величины более 1 метра и именуются пещерами . Маленькие же, величиной менее 1 см называются миндалинами . Особенно часто встречаются жеоды, состоящие из минералов группы кварца (аметист, горный хрусталь, агат, цитрин, халцедон и др.), но характерны и для многих других минералов, отлагающихся в пустотах. Самая большая аметистовая жеода (Императрица Уругвая) весит 2,5 тонны и более 3 метров в величину.

Благодаря своей округлой форме жеоды собирают энергию внутрь, структурируют, очищают и излучают ее вовне через кристаллы. За счет вогнутой формы и множества кристаллов энергия усиливается, но в отличие от единичных кристаллов и друз она излучается более мягко. Жеоды считаются камнями шаманов, их используют для получения видений и вхождения в состояние измененного состояния. Жеода прекрасна не только для украшения дома, но и для очистки пространства от негативной энергии. Как и друзы жеоды можно и нужно заряжать энергией солнца, луны или свечи (огня).

Монокристалл
— это отдельный однородный кристалл, имеющий непрерывную кристаллическую решётку. Внешняя форма монокристалла обусловлена его решёткой и условиями (в основном это скорость и однородность) кристаллизации. Медленно выращенный монокристалл почти всегда приобретает хорошо выраженную естественную огранку. А при большой скорости кристаллизации вместо монокристалла образуются однородные поликристаллы (или кристаллические зерна), состоящие из множества мелких монокристаллов. Примерами огранённых природных монокристаллов могут служить единичные кристаллы кварца, каменной соли, исландского шпата, алмаза, топаза, флюорита и др.

Монокристаллы являются прекрасными концентраторами, проводниками и преобразователями энергии. Двухконечные монокристаллы в отличие от кристаллов с одной вершиной могут одновременно проводить энергию в оба направления. В литотерапии монокристаллы используют для восстановления энергетических каналов, для четкого направления энергии камня к определенным органам. Монокристаллы способны вывести негативную и одновременно наполнить новой положительной энергией. Они отлично подходят для восстановления и структурирования личности, объединения сознания и духа.

Твердые тела разделяют на аморфные тела и кристаллы. Отличие вторых от первых состоит в том, что атомы кристаллов располагаются согласно некоторому закону, образуя тем самым трехмерную периодическую укладку, что называется – кристаллическая решетка.

Примечательно, что название кристаллов происходит от греческих слов «застывать» и «холод», и во времена Гомера этим словом называли горный хрусталь, который тогда считался «застывшим льдом». Сперва данным термином называли лишь ограненные прозрачные образования. Но позже, кристаллами стали звать также непрозрачные и не ограненные тела природного происхождения.

Кристаллическая структура и решетка

Идеальный кристалл представляется в виде периодически повторяющихся одинаковых структур – так называемых элементарных ячеек кристалла. В общем случае, форма такой ячейки – косоугольный параллелепипед.

Следует различать такие понятия как кристаллическая решетка и кристаллическая структура. Первая – это математическая абстракция, изображающая регулярное расположение неких точек в пространстве. В то время как кристаллическая структура – это реальный физический объект, кристалл, в котором с каждой точкой кристаллической решетки связана определенная группа атомов или молекул.

Кристаллическая структура граната — ромб и додекаэдр

Основным фактором, определяющим электромагнитные и механические свойства кристалла, является строение элементарной ячейки и атомов (молекул), связанных с ней.

Анизотропия кристаллов

Главное свойство кристаллов, отличающее их от аморфных тел – это анизотропия. Это означает, что свойства кристалла различны, в зависимости от направления. Так, например, неупругая (необратимая) деформация осуществляется лишь по определенным плоскостям кристалла, и в определенном направлении. В связи с анизотропией кристаллы по-разному реагируют на деформацию в зависимости от ее направления.

Однако, существуют кристаллы, которые не обладают анизотропией.

Виды кристаллов

Кристаллы разделяют на монокристаллы и поликристаллы. Монокристаллами называют вещества, кристаллическая структура которых распространяется на все тело. Такие тела являются однородными и имеют непрерывную кристаллическую решетку. Обычно, такой кристалл обладает ярко выраженной огранкой. Примерами природного монокристалла являются монокристаллы каменной соли, алмаза и топаза, а также кварца.

Немало веществ имеют кристаллическую структуру, хотя обычно не имеют характерной для кристаллов формы. К таким веществам относятся, например, металлы. Исследования показывают, что такие вещества состоят из большого количества очень маленьких монокристаллов — кристаллических зерен или кристаллитов. Вещество, состоящее из множества таких разноориентированных монокристаллов, называется поликристаллическим. Поликристаллы зачастую не имеют огранки, а их свойства зависят от среднего размера кристаллических зерен, их взаимного расположения, а также строения межзеренных границу. К поликристаллам относятся такие вещества как металлы и сплавы, керамики и минералы, а также другие.

Как правило, природные необработанные драгоценные камни поражают прежде всего теми гладкими плоскостями, которые их ограничивают, придавая им их характерные формы. Эти тела, обладающие определенной симметрией (с начала XVIII в. их называют кристаллами), представляют собой формы проявления элементов и соединений, внутреннее строение которых выше было определено как кристаллическое. Название «кристаллус» у древних греков и римлян относилось только к горному хрусталю. В переводе оно означает «замерзший», поскольку горный хрусталь принимали за сильно уплотненный лед. Впрочем, так считалось вплоть до конца XVII в. Лишь в 1672 г. знаменитый английский ученый Роберт Бойль в своем трактате о драгоценных камнях выступил против такого толкования. Он указал на то, что горный хрусталь в 2,66 раза тяжелее воды и потому никак не может быть льдом, который плавает в воде.

В 1723 г. врач из Люцерна Мориц Антон Капеллер, пожалуй, впервые придал термину «кристалл» более широкое значение. А еще раньше, в 1669 г., датчанин Нильс Стенсен в своем труде «Dissertationis Prodromus» показал, что у кварца всегда появляются одни и те же определенные воды граней, характерные именно для него, причем углы между ними всеща одинаковы (закон постоянства углов). Позже выяснилось, что эти наблюдения над кристаллами кварца имеют общее значение для любых кристаллов.

Как же возникают грани кристалла и как вообще растет кристалл?.

Соединение, хорошо нам известное как вода (молекула Н

0,. состоящая из элементов водорода и кислорода в отношении 2:1), в зависимости от температуры может находиться в твердом (лед), жидком (вода) или газообразном (пар) фазовом состоянии. В твердом состоянии молекулы воды сцеплены между собой, образуя типичную кристаллическую решетку.

С повышением температуры происходит ослабление сил взаимного сцепления координационных связей, которое при 0°С заходит настолько далеко, что наступает распад кристаллической решетки. Высвобождающиеся из нее молекулы образуют новые, теперь уже свободно движущиеся по отношению друг к другу комбинации, при этом соединение переходит в жидкое состояние (воду). Этот процесс называется таянием (в общем случае - плавлением).

При охлаждении воды до точки замерзания стремление атомов к взаимной координации, наоборот, возрастает. Вначале происходит объединение небольшого числа отдельных частиц с образованием зародыша кристалла, который затем путем медленного наращивания снова образует решетку. По завершении этого процесса последнюю опять можно представить как упорядоченную атомную постройку - кристаллическую решетку. Необходимо подчеркнуть, что кристаллическая решетка возникает путем постепенного присоединения атомов. Это и называется ростом кристаллической решетки.

Подобным же образом можно описать рост кристаллов соли из водного раствора (в общем случае - из расплава). Принципиально важно отметить, что растущая кристаллическая решетка стремится окружить себя плоскими атомными сетками, которые воспринимаются глазом как грани кристалла. Свободный беспрепятственный рост кристалла благоприятствует появлению на нем граней. В природе, однако, часто возникает обстановка стесненного роста, обусловленная недостатком свободного объема, помехами со стороны соседних кристаллов и подобными этим явлениями. В результате могут образоваться зерна, имеющие совершенно неправильные внешние контуры. Хотя они и выглядят внешне как совершенно неупорядоченные образования, их внутреннее кристаллическое строение в большинстве случаев полностью сохраняется и может быть выявлено с помощью рентгеновских лучей.

Идеальный кристалл образуется в обстановке полного соответствия условий возникновения и роста. Однако большинство встречающихся в природе кристаллов обнаруживает небольшие отклонения от вдеальной формы - искажения. Эти кристаллы с искаженными формами именуют реальными кристаллами.

При описании форм кристаллов в целом различают простые формы и их комбинации. Простая форма представлена в том случае, когда все грани кристалла одинаковы, равнозначны; если же они различны, то есть принадлежат разным простым формам, говорят о комбинации.

Простые формы можно подразделить на замкнутые простые формы, которые могут существовать сами по себе (всего их у кристаллов в соответствии с законами симметрии только 30), и открытые простые формы, которые возможны лишь в комбинациях.

Если присутствует одна-единственная открытая простая форма, не имеющая другой себе эквивалентной, то говорят о моноэдре (педионе). Если же моноэдр имеет параллельную ему противолежащую грань, то такая открытая простая форма называется пинакоидом, а если другая равнозначная плоскость не параллельна, а располагается под углом к первой, то такая форма носит название домы (из-за своего сходства с двускатной крышей), или диэдра. Когда две равнозначные плоскости сходятся в форме клина, образуется сфеноид (осевой диэдр, полупризма). При наличии нескольких равнозначных плоскостей, пересекающихся по параллельным ребрам, возникают различные призмы: трехсторонняя (тригональная), четырехсторонняя квадратная (тетрагональная), четырехсторонняя прямоугольная (ромбическая) и шестисторонняя (гексагональная).

Пирамиды - открытые формы, образованные несколькими равнозначными плоскостями, ребра которых сходятся в одной точке. Особые разновидности пирамид носят те же названия, что и соответствующие призмы.

К закрытым простым формам относятся бипирамида, октаэдр, трапецоэдр, скаленоэдру бисфеноид (ромбический и тетрагональный тетраэдры), тетраэдр, куб (гексаэдр)I, ромбоэдр, ромбододекаэдр, пентагондодекаэдр, икоситетраэдр (тетрагонтриктаэдр), тетрагексаэдр и гексаоктаэдр.

Поскольку открытые формы не могут существовать сами по себе, самостоятельно, они прежде всего образуют комбинации. Однако и закрытые формы сплошь и рядом встречаются в комбинациях. Среди простых форм комбинации чаще всего образуют призма и пина ко ид, пирамида и моноэдр. Нередко совместно встречаются призма и бипирамида, иноща также куб и октаэдр.

При рассмотрении всех этих кристаллографических форм ясно видно, что каждая из них имеет определенную симметрию, степень которой оценивается; исходя из отдельных ее элементов. В числе этих элементов следует назвать: плоскости зеркального отражения (плоскости симметрии), оси симметрии и центр симметрии. На основании возможных сочетаний различных элементов симметрии формы кристаллов можно подразделить на кристаллографические системы (сингонии) и классы симметрии.

Самой высокой симметрией характеризуется кубическая сингония, к которой принадлежат куб, октаэдр, ромбододекаэдр и другие формы. Из драгоценных и цветных камней в этой сингонии кристаллизуются алмаз, гранат, флюорит, сфалерит.

Далее по симметрии выделяются: тетрагональная сингония- циркон; гексагональная- апатит, берилл; тригональная (частично относимая к гексагональной) - турмалин, корунд; ромбическая - топаз; моноклинная - ортоклаз; триклинная - лабрадор. Здесь названы лишь некоторые представители отдельных сингоний. Кристаллы триклинной сингонии характеризуются самой низкой симметрией.

До сих пор, говоря о кристаллах и их формах, мы имели в виду только отдельные индивидуумы, одиночные кристаллы. Однако в природе они встречаются крайне редко. Сочетание немногих хорошо развитых связанных между собой кристаллов называется срастанием (сростком) кристаллов. Но гораздо чаще встречаются срастания многих кристаллов, нередко несовершенной формы, называемые кристаллическим агрегатом.